
VKernel-1

VALENTINA
Database Kernel

Paradigma (www.paradigmasoft.com)
© 1999-2003

Acknowledgments:

Andy Bachorski , Andy Fuchs, Bill Mounce, Brian Blood, Craig A. Berry,
Dan Waylonis, David A. Bayly, Frank J. Schima, Guillermo Zaballa,
Hideaki Iimori, John Roberts, Lynn Fredricks, Paul Shaap, Robert Brenstein.

VKernel-2

Contents

Contents

Contents

Introduction .. 4
Parameters of the Valentina Database Engine ... 5
Database of Valentina ... 6

«dbName.vdb» file ... 6
«dbName.dat» file .. 7
«dbName.blb» file .. 7
«dbName.ind» file .. 7
Properties of Database ... 8
Elements of Database ... 9
Creation of Database ... 9
Encryption of database .. 10
System Tables.. 11

BaseObject (Table).. 16
Properties of a BaseObject .. 16
Functions to modify BaseObject properties .. 16
Elements of a BaseObject .. 17

Field types.. 18
Properties of a Field ... 19
Functions to modify Field properties ... 20

Numeric Fields .. 21
Date, Time and DateTime Fields ... 21
String and VarChar Fields ... 22

VarChar technical notes .. 22
Properties of String and VarChar Fields ... 23
RegEx search .. 25

BLOB Field ... 26
Properties of BLOB Field .. 26
Compression of BLOB field .. 27

Text Field ... 28
Properties of Text Field.. 28
RegEx search .. 28

Picture Field ..29

VKernel-3Contents

Contents

Contents
ObjectPtr Field ... 30

Properties of ObjectPtr ... 30
BaseObject Methods ... 32

Method Results ... 32
Indexing of Methods .. 33
NULL Values and Methods ... 33
Access of BaseObject Methods.. 34
Using of BaseObject Methods ... 35

Cursor .. 36
Properties of Cursor .. 36
Elements of Cursor .. 37
Creation of Cursor ... 37
Access of BaseObject Methods from Cursor ... 38

Relations between Tables ... 39
Relational Data Model ... 39
Network Data Model .. 40
Valentina Data Model .. 41

The Database Cache ... 42
RAM requirements for sorting .. 43
Appendix A: Valentina error numbers ... 44

VKernel-4

Intr oduction

Valentina is an extremely fast, powerful and unique Object-Relational database engine. It
is the result of concentrated, independent research started in 1993. The underlying technol-
ogy combines the best features of two industry standard database models, «relational» and
«network», and adds some new unique features to create one of the fastest and most flex-
ible database solutions available today.

Valentina implements the Object-Relational (OR) data model (a theoretical development
of Paradigma Software), which is an extension of traditional Relational data model. The
OR data model contains the Relational model as an exact subset. This means that every-
thing that works in a Relational Database Management System (RDBMS) must work in
Valentina (we can compare this with the programming languages C and its object-oriented
extension C++). This means that you can smoothly switch from the familiar RDBMS model
to the modern model of Valentina.

Paradigma Software offers different solutions based on the Valentina database:

PPC X Win32
Valentina ORDBMS with GUI and AppleScript support • •
Valentina C++ SDK • • •
Valentina C SDK • • •
Valentina Java SDK • • •
Valentina for REALbasic. • • •
Valentina for Macromedia Director • • •
Valentina XCMD • • •
Valentina for WebSiphon •
Valentina COM •

The Valentina database file format is cross-platform and consistent between all Valentina
products. In other words, Valentina offers a solution to allow databases built for use with
one development environment to be used with any other development environment sup-
ported by Valentina on any supported platform.

Introduction

Introduction

VKernel-5

Parameters of the Valentina Database Engine

Max length of the disk file: 2 (64-1) (2 TB)

Max number of Tables in databse: 2 (32-1) (2,147,483,647)
Max number of Fields in the Table: 2 16 (65,535)
Max number of records in the Table: 2 32 (4,294,967,295)
Max number of indexes per Table: unlimited

Max size of String field 64KB
Max size of VarChar field 64KB
Max size of a BLOB record: 2 (64-1) (2 TB)

Characteristics of Valentina Database Engine

Characteristics of Valentina Database Engine

VKernel-6

Database of Valentina

Database of Valentina

Valentina has its own internal file system, so it can store many logical files in a single disk
file. Valentina can be configured to store a databases as one, two, three, or four separate
files:
«dbName.vdb» - description of the database structure
«dbName.dat» - custom data stored in records
«dbName.blb» - contains BLOB (Binary Large OBjects), TEXT and Picture fields
«dbName.ind» - indexes and any other temporary files

Database of Valentina

The number of files used must be specified by the parameter «Mode» of Database.Create().
The choices are:
1 - “.vdb” [desc LOB, indexes]
2 - “.vdb” [description] + “.dat” [data, BLOB, indexes]
3 - “.vdb” [description] + “.dat” [data, BLOB] + “.ind” [indexes]
4 - “.vdb” [description] + “.dat” [data] + “.blb” [BLOB] + “ .ind” [indexes] // DEFAULT
5 - “.vdb” [description,data,BLOB] + “.ind” [indexes]
6 - “.vdb” [description,data] + “.blb” [BLOB] + “ .ind” [indexes]
7 - “.vdb” [description,data,indexes] + “.blb” [BLOB]
8 - “.vdb” [description] + “.dat” [data,indexes] + “.blb” [BLOB]

«dbName.vdb» file

Contains description of the entire database: tables, fields, relations, layouts, users, pass-
words and so on. This file usually is very small, just several KB. If the description file is
separate (in modes 2, 3, 4, 8), it can moved to another computer, opened by Valentina, and
a new, empty database will be created. Valentina will automatically generate the other files.

The extension .vdb for this file is optional in MacOS. If you are doing a cross-platform
development, you need to specify this extension to allow the use of database files between
platforms.

VKernel-7

«dbName.dat» file

Contains custom data stored in the database records.

«dbName.blb» file

Contains the contents of BLOB, TEXT and Picture fields.

«dbName.ind» file

Contains indexes, joins and any other temporary files. Some of these files will persist
between sessions, while others will be removed once a session is finished.

Advantages to having a separate index file are the following:
-- Reduces the risk of disk write data corruption because part of the disk write will be to a
separate index file, which can be rebuilt by Valentina. This file can be deleted and the
database will not be corrupted since Valentina will rebuild indexes when they are needed.
This is useful if there was a crash while working with a database.

During development, if you begin to see incorrect results of a search and/or sort, you may
consider deleting the index file and re-trying your application. Wrong indexes can result
from interruption of programm execution by debugging tools in C++, REALbasic, Direc-
tor, XCMD, and other languages.

Database of Valentina

Database of Valentina

VKernel-8

Properties of database

Database of Valentina

Properties of Database

Name
Each database must have a name that is unique across the scope of the application. The
database name is case-insensitive.

DateTime Format
Valentina uses a proprietary format for Date and Time. It specifies how Date and Time
fields will be converted to and from strings. This conversion affects any string operation of
the kernel, including Import/Export and SQL queries.

A Database has the following properties:
DateFormat - specify order for date: 0 - M/D/Y, 1 - D/M/Y, 2 - Y/M/D
DateSep - separator for date, e.g. "/"
TimeSep - separator for time, e.g. ":"
CenturyBound - Define behavior of auto-correction of date feature. Default is 20.

By default, the DateTime format of a Database is the same as the system format of the host
computer. However, it can be changed on the fly at any time. For example, if you want to
import a file with different settings for Date fields, then you can change the DateTime
format, import that file, and change the format back.

Valentina provides auto correction of 1 and 2 digit date years.
Example:

0 => 2000
1 => 2001
19 => 2019
20 => 1920 <<<<<<<<< boundary
99 => 1999

If you set the century boundary to zero, then Valentina will not provide auto-correction of
year values.

TimeOut
Specifies the maximum lifespan in seconds of a Cursor of this DataBase. All Cursors that
exceed this time are destroyed. The default TimeOut value is -1 (infinite lifespan).

SegmentSize
Specifies the segment size for database files. Valentina allocates minimum a segment, when
it is needed a new space on disk.

Mode
Specifies the number of database files.

Encrypted
Returns TRUE if the entry database is encrypted.

VKernel-9

Elements of Database

BaseObject
In order to be valid, each database must contain at least one valid BaseObject, Valentina's
unique definition of a traditional table. You can obtain the count of BaseObjects in a data-
base, as well as individual BaseObjects by name or by index (the index is 1-based).

Cursor
The result of an SQL (structured query language) command is a Cursor. The database
automatically keeps track of all Cursors. A Cursor will be destroyed once it exceeds the
TimeOut value set by the user for the database.

Creation of Database

Two optional parameters can be specified when creating the database:

Mode
Specifies the number of disk files for a new database. Read the description of this parameter
at the beginning of this chapter. Once set during the creation of a database, the Mode param-
eter cannot be changed.

Segment Size
Specifies the minimum size by which Valentina will grow the disk file. It does not limit the
database size to the specified value, but controls the overall number of segments in the
database (e.g., a 1 MB database with 32 KB Segment Size would contain 34 segments).

In most cases, this parameter will not need to be changed. However, if the items in the
database are small and numerous (e.g., a game with a database for the players, or a address
book), a smaller size may be specified.

The default value is 32 KB.

Note: If the description file is stored separately, then the Segment Size will always be 4KB.

Database of Valentina

Database of Valentina

VKernel-10

Encryption of database

You can optionally encrypt your Valentina database using an Encryption Key.

Encryption gives much stronger protection of database files then just protecting files by
password. When you encrypt a database, its database files are altered to a format that is not
readable. The encryption key is not stored inside the database at all, so your database cannot
be hacked.

• ATTENTION: if you forget your Encryption Key of encryption you will loose this data-
base. There is no way to decrypt data without Key.

As a trade-off for strong protection the database is a little slower, because each time Valen-
tina reads/writes data from/to disk it must execute decryption/encryption. In fact, this slows
the database by only several percentage points.

To allow you to select the best balance of performance vs. security for your needs, Valentina
offers you several flexiable options of encryption:

1) encryption of the whole database
This option provides you the most protection because ALL your data are encrypted.

2) encryption of one or several BaseObjects only.
This option allows you to encrypt only table(s) with confidentional information
and still retain excellent performance for other tables.

3) encryption of one or several fields only.
This option allows you to encrypt only field(s) with confidentional information
and still retain excellent performance for other fields.

4) encryption of database description file (".vdb") only.
This option does not encrypt your data at all. It protects only the database structure
description, therefore preventing your database from being opened by any other
application using a Valentina kernel.

• NOTE • When a field is encrypted, its index file is also encrypted.

\By default Valentina uses the Blowfish encryption algorithm. BlowFish is both strong (448
bits) and fast. Its Encryption Key is a string that can be from 1 to 72 characters long, with a
longer key providing stronger security.

Valentina allows you to Set/Remove encryption and change the Encryption Key at runtime
even if the table being addressed contains records. Please note that runtime encryption may
take a bit of time, since Valentina must modify each table record.

Database of Valentina

Database of Valentina

VKernel-11

System Tables

YOU CAN SKIP THIS PARAGRAPH if you do not intend to use
Valentina's more advanced features.

Valentina stores information about database structure in the "DatabaseName.vdb" file using
system tables.

Usually RDBMS has the following system tables:
sysTable { name, ... }
sysField { name, type, length, ...}
sysType { value, value, ... } // info about enum types.
sysUser { name, password, ... }
sysGroup { ID, UserPtr, ... }
.....

Valentina uses only 2 system tables: "sysItemDescription" and "sysItem". Both tables
have self recursion, as described bellow. In addition, the "sysItem" table has a pointer on the
table "sysItemDescription".

Table "sysItemDescription" contains descriptive information about system objects and their
properties. Its structure is:

sysItemDescription{
Kind as Long (indexed + unique)
Name as VarChar[504] (indexed)
Type as Byte
ParentPtr as ObjectPtr to sysItemDescription (RESTRICT) // self recursion.

}

Valentina uses the Name and Type fields to build temporary pseudo-system tables. The
Kind field is a unique long integer identifier of item description. You can use positive
values of Kind. Valentina reserves negative values for its own use.

Note, that column 'Name' is not marked as unique. This is because different system tables
must be able to have columns with the identical names. For example, study the default
Valentina system table on next few pages. Both object "BaseObject" and object "Field"
have property "Name".

The table "sysItem" contains 2 main fields: {Value, TextValue} and 2 ObjectPtr fields to
establish relations. The structure of table "sysItem" is:

sysItem{
ItemDescrPtr as ObjectPtr to sysItemDescription (indexed, RESTRICT)
Value as VarChar[504]
TextValue as Text[256]
ParentPtr as ObjectPtr to sysItem (indexed, CASCADE)// self recursion.

};

System tables

Database of Valentina

VKernel-12

Note that a sysItem can store its value either in the field 'Value' (preferred for numbers and
short strings) or in the field 'TextValue' (better for large chunks of text). So, when you
assign a new value to a property you must choose where to store that value.

Valentina uses ItemDescPtr to link Item with its description. ParentPtr field is used to create
a hierarchy of items: child items point to their parents. In fact, such a structure allows us to
build virtual trees in a table. Valentina builds 2 such trees:
1) hierarchy of objects;
2) hierarchy of properties for objects.

The hiearchy of objects is shown by:
database

|------> BaseObject1
| |-----> field1
| |-----> field2
| |-----> field3
|------> BaseObject2

|-----> field1
|-----> field2

and the hiearchy of properties is shown by:
BaseObject1

|-----> name
|-----> fieldCount
|-----> linkCount

It is interesting to note that:
• records of "Objects" in the "sysItem" table have fields Value and TextValue equal to 0.
• a property record always has at least one populated value field, and it do not have child
records.

Advantages of the Valentina approach
These 2 tables can handle standard system tables mentioned above, but it is more flexiable:
1) you can add your own properties for any system object– Database, BaseObject, or Field.
These properties will be stored in the vdb file, i.e. you can really adapt the database struc-
ture to needs of your application.
2) EVEN MORE: you can create your own system objects and their properties. For ex-
ample you can create table "Form", "Stored Procedure", "Font maps", "Character Set".
3) older version of Valentina kernel will be able to open db files of newer version. Proper-
ties added by newer versions of Valentina are simply ignored.
4) you can build, on the fly, a temporary system table for EACH system object:
"sysBaseObject", "sysField", "sysType", so Valentina will operate as usualy RDBMS.

If look deeper, you will see that the table "sysItemDescription" contain the descrption of a
system table, and the table "sysItem" contains records of that system tables.

Database of Valentina

Database of Valentina

VKernel-13

Default records of sysItemDescription table

Let's look at sysItemDescription table. Note that the RecID column is displayed just for
convenience, to help you see more easily how records are related.

Note, that Names of objects and properties will never be changed or removed. At the same,
time new items can be added, so your application must not depend on the number of records
and their order. Your app must always retrieve the RecID of a specific item by searching for
the "Kind" item that represents the key for this table (rather than the "Name" item).

--
KIND NAME TYPE PARENT
--
// system Objects
{-1, "Database", 0, 0 }, // RecID = 1
{-2, "BaseObject", 0, 0 }, // RecID = 2
{-3, "Field", 0, 0 }, // RecID = 3
{-4, "Link", 0, 0 }, // RecID = 4
{-5, "LinkBranch", 0, 0 }, // RecID = 5
{-6, "EnumType", 0, 0 }, // RecID = 6
{-7, "User", 0, 0 }, // RecID = 7
{-8, "Group", 0, 0 }, // RecID = 8
{-9, "Procedure", 0, 0 }, // RecID = 9

// Database properties:
{-100, "DateFormat", kFBL_TypeString, 1 }, // RecID = 10
{-101, "DateSep", kFBL_TypeString, 1 }, // RecID = 11
{-102, "TimeSep", kFBL_TypeString, 1 }, // RecID = 12
{-103, "DateCentury1", kFBL_TypeLong, 1 }, // RecID = 13
{-104, "DateCentury2", kFBL_TypeLong, 1 }, // RecID = 14
{-105, "DateBound", kFBL_TypeLong, 1 }, // RecID = 15
{-106, "Encrypted", kFBL_TypeBoolean, 1 }, // RecID = 16
{-107, "StructureEncrypted", kFBL_TypeBoolean, 1 }, // RecID = 17
{-108, "TimeOut", kFBL_TypeULong, 1 }, // RecID = 18
{-109, "Timer", kFBL_TypeLLong, 1 }, // RecID = 19
{-110, "BaseObjectLastID", kFBL_TypeLong, 1 }, // RecID = 20
{-111, "FieldLastID", kFBL_TypeLong, 1 }, // RecID = 21
{-112, "EncryptedExample", kFBL_TypeVarChar, 1 }, // RecID = 22
{-113, "EncStructExample", kFBL_TypeVarChar, 1 }, // RecID = 23

// BaseObject properties:
{-200, "Name", kFBL_TypeVarChar, 2 }, // RecID = 24
{-201, "Encrypted", kFBL_TypeBoolean, 2 }, // RecID = 25
{-202, "BaseObjectID", kFBL_TypeLong, 2 }, // RecID = 26
{-203, "Parent", kFBL_TypeVarChar, 2 }, // RecID = 27
{-204, "InheritanceType", kFBL_TypeShort, 2 }, // RecID = 28
{-205, "Abstract", kFBL_TypeBoolean, 2 }, // RecID = 29
{-206, "EncryptedExample", kFBL_TypeVarChar, 2 }, // RecID = 30

System tables

Database of Valentina

VKernel-14

KIND NAME TYPE PARENT

// Field properties:
{-301, "Name", kFBL_TypeVarChar, 3 }, // RecID = 31
{-302, "Encrypted", kFBL_TypeBoolean, 3 }, // RecID = 32
{-303, "Type", kFBL_TypeByte, 3 }, // RecID = 33
{-304, "FieldID", kFBL_TypeLong, 3 }, // RecID = 34

{-305, "Indexed", kFBL_TypeBoolean, 3 }, // RecID = 35
{-306, "Unique", kFBL_TypeBoolean, 3 }, // RecID = 36
{-307, "Nullable", kFBL_TypeBoolean, 3 }, // RecID = 37
{-308, "ByWords", kFBL_TypeBoolean, 3 }, // RecID = 38
{-309, "Compressed", kFBL_TypeBoolean, 3 }, // RecID = 39
{-310, "Method", kFBL_TypeBoolean, 3 }, // RecID = 40

{-320, "MaxLength", kFBL_TypeULong, 3 }, // RecID = 41
{-321, "Language", kFBL_TypeVarChar, 3 }, // RecID = 42
{-322, "Segment", kFBL_TypeULong, 3 }, // RecID = 43
{-323, "Compression", kFBL_TypeUShort, 3 }, // RecID = 44
{-324, "Quality", kFBL_TypeUShort, 3 }, // RecID = 45
{-325, "MethodText", kFBL_TypeText, 3 }, // RecID = 46

{-328, "MinValue", kFBL_TypeVarChar, 3 }, // RecID = 47
{-329, "MaxValue", kFBL_TypeVarChar, 3 }, // RecID = 48
{-330, "DefaultValue", kFBL_TypeVarChar, 3 }, // RecID = 49
{-331, "Constrain", kFBL_TypeVarChar, 3 }, // RecID = 50
{-332, "EncryptedExample", kFBL_TypeVarChar, 3 }, // RecID = 51

// Link properties:
{-400, "Name", kFBL_TypeVarChar, 4 }, // RecID = 52
{-401, "LinkType", kFBL_TypeByte, 4 }, // RecID = 53
{-402, "Target", kFBL_TypeVarChar, 4 }, // RecID = 54
{-403, "DeletionControl", kFBL_TypeVarChar, 4 }, // RecID = 55

// LinkBranch properties:
{-500, "Name", kFBL_TypeVarChar, 5 }, // RecID = 56
{-501, "RelType", kFBL_TypeByte, 5 }, // RecID = 57
{-502, "DeletionControl", kFBL_TypeVarChar, 5 }, // RecID = 58

// Enum properties:
{-600, "EnumItem", kFBL_TypeVarChar, 6 }, // RecID = 59

// User properties:
{-700, "Name", kFBL_TypeVarChar, 7 }, // RecID = 60
{-701, "Password", kFBL_TypeVarChar, 7 }, // RecID = 61

// Group properties:
{-800, "Name", kFBL_TypeVarChar, 8 }, // RecID = 62

// Procedure properties:
{-900, "Name", kFBL_TypeVarChar, 9 }, // RecID = 63
{-901, "ProcText", kFBL_TypeText, 9 } // RecID = 64

System tables

Database of Valentina

VKernel-15

System tables

Database of Valentina

Example of sysItem table

Now let's look on example of sysItem table. Let we have simple database with 1 table
"Person" and 3 fields FirstName, LastName, BirthDate. Note, that first records describe
Database object (because it was created first), then we see records that describe table and
then fields.

RecID ItemDescrPtr Value TextValue ParentPtr

1 {1, 0, 0, 0 }, // Database

2 {10, "2", 0, 1 }, // DateFormat
3 {11, "/", 0, 1 }, // DateSep
4 {12, ":", 0, 1 }, // TimeSep
5 {13, "1990", 0, 1 }, // DateCentury1
6 {14, "2000", 0, 1 }, // DateCentury2
7 {15, "20", 0, 1 }, // DateBound
8 {16, "0", 0, 1 }, // Encrypted
9 {17, "0", 0, 1 }, // StructureEncrypted

10 {2, 0, 0, 1 }, // BaseObject
11 {24, "Person", 0, 10 }, // Name
12 {25, "0", 0, 10 }, // Encrypted

13 {3, 0, 0, 10 }, // Field
14 {31, "FirstName", 0, 13 }, // Name
15 {32, "0", 0, 14 }, // Encrypted
16 {33, "VarChar", 0, 15 }, // Type
17 {41, "504", 0, 16 }, // MaxLength
18 {42, "English", 0, 17 }, // Language

19 {3, 0, 0, 10 }, // Field
20 {31, "LastName", 0, 19 }, // Name
21 {32, "0", 0, 19 }, // Encrypted
22 {33, "VarChar", 0, 19 }, // Type
23 {41, "504", 0, 19 }, // MaxLength
24 {42, "English", 0, 19 }, // Language

25 {3, 0, 0, 10 }, // Field
26 {31, "BirthDate", 0, 25 }, // Name
27 {32, "0", 0, 25 }, // Encrypted
28 {33, "Date", 0, 25 }, // Type

VKernel-16

BaseObject

BaseObject

BaseObject (Table)

Each database must have at least one BaseObject. The maximum number of BaseObjects
for database is 2 Billion.

The term «BaseObject» is used instead of the traditional RDBMS term «Table» because
Valentina uses Object-Relational model. In this model, BaseObjects can inherit attributes
and data (i.e., one BaseObject can be implemented as several related tables that are invis-
ible to the User and Developer). The result is that BaseObject appear to be a single Table. In
the simplest case, when BaseObject has no parent, it is exactly the same as a Table. The
BaseObject can, however, do more than a Table. For simplicity sake, the terms can be used
interchangeably.

Properties of a BaseObject

Name
Each BaseObject has a unique Name in the scope of database. The Name is case-insensi-
tive.

Identifier
A BaseObject has its own unique identifier inside of a database. In most cases, this property
is used internally by the Valentina kernel.

Functions to modify BaseObject properties

You can use the next functions (direct API) to modify properites:

VBaseObject.SetProperty(
inPropertyName as String,
inPropertyValue as String)

Assign a new value for specified property of VBaseObject. If such property not exists it is
created. If you want delete a property then specify NULL for the second parameter.

VBaseObject.GetProperty(
inPropertyName as String) As String

Read and returns the specified property of VBaseObject.

VKernel-17

Elements of a BaseObject

A BaseObject can be considered as a Table with Fields (columns) and Records (rows).

Fields
- Each valid BaseObject must have at least one Field.
- You can get the number of Fields in the BaseObject.
- You can get a Field from a BaseObject by name or by index (starting at 1).
- Each BaseObject has an internal virtual Field named «RecID» (this name is reserved by
Valentina, so you must not use it for your fields) and type ULong (4 bytes). This field can
only be accessed by name.

Records
- Each BaseObject can have between 0 and 4 billion records.
- Each record has a unique «RecID» (starting at 1).
- A «RecID» of 0 indicates an undefined record.
- Deleted records are marked as such and their space will be reused.

VKernel-18

Field types

Valentina supports the following type of fields:

Field types

Field types

Type Size in Table Range

Boolean 1 bit 0,1
Byte 1 byte 0..255
Short 2 bytes -32768..32767
UShort 2 bytes 0..65535
Medium 3 bytes -8388608..8388607
UMedium 3 bytes 0..16777215
Long 4 bytes -2147483647..2147483647
ULong 4 bytes 0..4294967295
LLong 8 bytes -2(64-1)..+2(64-1)

ULLong 8 bytes 0..264

Float 4 bytes ± (3.4-38..3.438)
Double 8 bytes ± (1.7-308..1.7308)

Date 4 bytes any date between -222 ..222 years
Time 4 bytes any time
DateTime 8 bytes conjunction of Date and Time

String 1..65535 bytes string of fixed length
VarChar 1..65535 bytes string of variable length

FixedBinary 1..65535 bytes binary data of fixed length
VarBinary 1..65535 bytes binary data of variable length

BLOB up to 2 GB any binary data
Text up to 2 GB text

ObjectPtr 4 bytes RecID of pointed record

VKernel-19

Properties of a Field

Name
Each field must have a name (up to 32 bytes) unique in the scope of BaseObject.

Indexed
If this property is TRUE then Valentina will maintain an index for this field. This property
can be changed at runtime.

When Valentina needs to search or sort on a field, it automatically builds the index for that
field (if needed) and sets the flag ‘indexed’ to TRUE. If you set this flag to false, then
Valentina will to remove the index data for that field from disk.

Indexing requires a more time for some operations (e.g., Add/Update/Delete), but it in-
creases the speed of searching and sorting. Also, indexing requires additional disk space.

Unique
If the flag ‘unique’ is TRUE, then Valentina will not add to the BaseObject a new record
with duplicate values for this field.

If the flag Unique is changed at runtime and a table is not empty, then the index will be
automatically rebuilt. This occurs because Valentina uses different formats for indexing
unique and non unique fields. Unique index has more compact format because it don’t need
store for each value count of records (for unique field it is always 1).

Nullable
The flag ‘nullable’ defines if the field accepts NULL values. By default, the flag is FALSE.
If it is TRUE, then fields can store NULL values. This feature adds additional information
on disk – 1 bit per record of the nullable field.

NULL is not the same as an empty string “” or zero. NULL means – «value is not defined»
or «value is not known», so a unique field can have many records with a NULL value. On
sorting, records with a NULL value are placed first.

This property can be changed at runtime. If there are records in the table in this case, they
will automatically be considered NOT NULL.

IsMethod
This flag is true if the field is a Method. In this case, the Field is virtual and does not use disk
space. Its value is calculated on the fly when needed. For real fields of a BaseObject that
stores values on disk, this flag is false.

It is not possible convert a virtual field into a real field and vice versa for an existing field.

Field types

Properties of a Field

VKernel-20

Functions to modify Field properties

You can use the next functions (direct API) to modify properites:

VField.SetProperty(
inPropertyName as String,
inPropertyValue as String)

Assign a new value for specified property of VField. If such property not exists it is created.
If you want delete a property then specify NULL for the second parameter.

VField.GetProperty(
inPropertyName as String) As String

Read and returns the specified property of VField.

Functions to modify Field Properties

Field types

VKernel-21

Numeric Fields

Valentina supports many different numeric types. They differ on the size and on the range of
the supported values. You should choose the smallest type of database field which supports
your range of values. The benefits are that you reduce the disk space requirements, and
increase the overall database performance.

For example if you know that in field will be stored numbers in range 0..1,000,000 the best
choice is UMedium type, because UShort type is not enough to handle1,000,000. ULong
type also can be used but in this case you loose 1 byte per record.

Note, that Boolean type of Valentina uses really just one BIT per record, other DBMS use 1
byte or, in best case, they pack into byte 1-8 bits.

Date, Time and DateTime Fields

Date and Time fields use 4 bytes per record.
DateTime fields store both date and time and use 8 bytes per record.

The internal format of these fields is independent of the system settings. However, the
formatting strings for these fields must be consistent for the field in the database.

Numeric Fields

Field types

VKernel-22

String and VarChar Fields

Valentina offers 3 field types for storing text:
String - stores strings of fixed length with a range of 1-65,535 bytes.
VarChar - stores strings of variable length with a range of 1-65,535 bytes.
Text - stores strings of unlimited length (up to 2GB).

• For strings with a length of 1 byte, it is better to use a Byte field.
• For strings with length 2..10 bytes, it is better to use a String field.
• For strings with length 10..1024 bytes, it is better to use VarChar or String fields.
• For strings with a length of more than 1K bytes, it is typically more effective to use a Text
field. However, if you know that the maximum length is 3 KB and the average length is
100-200 bytes, it might be better to use a VarChar type.

String field – implements fixed length strings. It always use N bytes on disk, even if you
store an empty string.

VarChar technical notes

Since a VarChar field can store strings of variable length, the internal implementation of a
VarChar file is based on pages.

The minimal size of a page is 1,024 bytes. A page must be able to contain at least 2 strings
of maximal length. If you set the MaxLength of a field to 20K then pages with a size of
about 40KB will be used.

This is important to know because a page is an atom of read/write operations. Performance
will be decreased if you specify unreasonably large MaxLength while storing small strings.

Each page has a header of 8 bytes. For each string on a page are used:
(length of the string + 4) bytes.

Note that if the value of a VarChar is an empty then 8 bytes are used:
4 in the Table and 4 in a page file, i.e. VarChar field has 8 bytes overhead per string

This means that if you use a MaxLength in the range:
1.. 504 size of page is 1,024 bytes
505..1016 size of page is 2,048 bytes

The default MaxLength for a VarChar field is 504 bytes. This is the maximum number that
allows us to work with 1,024 byte pages. Indeed:

8 bytes of header + 2 records * (504 + 4) = 1024 bytes.

You can specify lower values for MaxLength (e.g., 20), but 1,024 byte pages will still be
used. The only advantage is that you will truncate strings longer than 20 bytes.

String and VarChar Fields

Field types

VKernel-23

Question: Is a VarChar field slower than a String field or faster?

1) Random access speed of a VarChar is lower of the access speed of a fixed length String,
because Valentina must at first locate the page of a string, then locate a string on the page.

2) Since the size of a VarChar can be several times less than the size of a String with the
same maximal length, operations such as Indexing, Export, and RegEx search should be
faster for a VarChar.

3) Update of an existing record for VarChar is slower. This is caused by having to rearrange
the whole page.

Properties of String and VarChar Fields

VarChar and String fields have absolutely the same API, they differ just on internal storage
format. These types have additional properties that help to manage working with strings.

MaxLength
This property is used for String and VarChar fields (Text field has no limit).
It defines a maximum string length that can be stored in this field. If you try to store a string
that is longer, then it will be truncated. When using a VarChar field, there is no benefit (in
terms of speed or disk space) to using a value of less than 504 bytes because it stores
characters in logical pages.

• Changing of MaxLength is similar to ChangeType operation, because it requires a trans-
formation of disk files.

IndexByWords
When this flag is TRUE, the index is built for each word of the string. This is very useful for
large strings (50 characters and more).

For example, let’s say we have one record with the value «aaa bbb ccc ddd». If the field is
indexed by words, then search conditions like «bb», «ccc», or «d» will return that record. If
the field is not indexed by words, then said conditions return nothing. Only conditions like
«a», «aa», «aaa bb» (i.e., which match to the beginning of the string) will return the record.

• If a field is indexed by words, then it can not be sorted, because there is no index on the
beginning of the string field.

• On creation of a String and a VarChar fields Valentina set this flag in TRUE if you specify
the length more than 255 bytes. You can set this property in FALSE right after creation
of a field if you don’t want index the field by words.

• Changing of the IndexByWords property will require rebuilding the index.

Field types

String and VarChar Fields

VKernel-24

Language

The string field has a «Language» property that can accept name of language as string. For
the list of available languages look below.

The default «Language» is "ASCII", which corresponds to a byte-to-byte method of string
comparison which sorts based on the ASCII value of the characters. This is the fastest
method, but it can be used only for some single-byte languages. If this method is not accept-
able for your language, then you must specify the language. Valentina allows for fields with
different languages in the same table.

If you use a single-byte language, then a String can store up to 65,535 characters. If you use
a 2-byte code language, then it can accept up to 32,787 characters. The ‘length’ property of
the string field determines the size of the field in bytes (not in characters). Note that if you
are going to use your database internationally, languages like Chinese, Korean and Japa-
nese require 2-byte language support.

• Changing of the language property will require rebuilding the index of the field, because
order of records most probably will be other.

List of languages:List of languages:List of languages:List of languages:List of languages:

Field types

String and VarChar Fields

DefaultDefaultDefaultDefaultDefault
ASCI IASCI IASCI IASCI IASCI I

Afrikaans
Arabic
Armenian
Bangladesh
Bulgarian
Byelorussian
Catalan
Croatian
Czech
Danish
Dutch
English
Estonian
Farsi
Finnish
French
French Canadian
German
Greek
Hebrew
Hindi
Hungarian
Icelandic
Indonesian

Italian
Japanese
Korean
Latvian
Lithuanian
Norwegian
Pakistani
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Simplified Chinese
Slovakian
Slovenian
Spanish
Swedish
Thai
Traditional Chinese
Turkish
Ukrainian
Vietnamese

VKernel-25

RegEx search

String, VarChar and Text fields can be searched using a regular expression (RegEx) search.
The syntax of RegEx can be found in the folder «Syntax of RegEx». To search by RegEx,
you should use the «LIKE» keyword in the SQL query.

A RegEx search never uses the index of a field because it needs to check all records. Search
time by RegEx is proportional to the number of records in a Table.

RegEx search can be case insensitive. For this you should use the switch
(?i) to set case insensitive search ON for the following string
(?-i) to set case insensitive search OFF for the following string

Example: ‘(?i)I AM CASE INSENSITIVE(?-I)I am Case Sensitive’

Note, that if you need to use in your search characters which are reserved for RegEx, then
you should prepend a backslash ‘\’. For example:

‘Company \(A\)’

String and VarChar Fields

Field types

VKernel-26

BLOB Field

This type of field is intended for storing large data objects (e.g., pictures, text, movies).
When a BLOB field is defined in a table, 4 bytes in each record are reserved and an addi-
tional file is created to store the data. A reference (4 bytes) to the BLOB file is stored in the
table record. If a table record does not have an associated BLOB record, then the reference
is 0.

When Valentina loads a record of the table into memory, it does not load the associated
BLOB record. This allows Valentina to quickly loop through records in a table without the
overhead of loading the BLOB data. The data can be loaded into memory using one of the
special BLOB field methods.

• With the exception of a Text field, a BLOB field cannot be indexed, unique or nullable.

Properties of BLOB Field

SegmentSize
This parameter is used only at creation time – it cannot be changed at runtime. Choose a
value other than the default if you know something about the size of the BLOB data that
would allow it to fit within a segment.

For example, if you have a fixed size of 12 KB for an image, then you must set SegmentSize
= 12 KB + (overhead of 1 KB). Or if you know that the maximum size of your text field
which you will store as a BLOB is 3 KB, then set SegmentSize = 3 KB + 1 KB. By doing
this, you can save 10 - 4 = 6 KB on each record.

• If you want to store 100KB BLOBs, then the segment size is not required to be 100 K. It
can be 10KB, 30 KB, or even 200KB.

• Do not confuse the SegmentSize of a BLOB field with the SegmentSize of a Database.
The SegmentSize of a Database affects allocation of disk space for database files. The
SegmentSize of a BLOB field defines the logical structure of a BLOB file.

• Different BLOB fields can have different SegmentSizes.
• The default SegmentSize is 1KB.
• Minimum SegmentSize is 128 bytes.

BLOB Field

Field types

VKernel-27

BLOB Field

BLOB Field

Compression of BLOB field

Valentina allows you compress a BLOB field. You can make a BLOB field compressed as
easy as set its flag 'Compressed' to TRUE.

• On default Valentina uses ZIP compression.
• You can set up level of compression in range 0..9.

0 - fastest compression.
9 - best compression.

Valentina allows you change the flag 'Compressed' at runtime, i.e. you can change it for
table that has records. As you understand, this is a long time operation, because Valentina
must compress/uncompress BLOB field of each table record.

If a BLOB field has index (for example TEXT field) then index is not compressed and still
can be successfuly work.

In fact the main advantege to have compression of BLOB field on the database kernel level
is ability to have an INDEXED compressed TEXT field. Really, for not indexed general
BLOB developer can implement own compression and store to BLOB already compressed
data. But this way will not work with TEXT, because Valentina will not be able to built
index. When Valentina do compression self it can build index with no problems.

VKernel-28

Text Field

Don’t confuse this field with the String field! This is a special version of a BLOB field that
is intended to store large amounts of text. The main advantage of this field is that it can be
indexed and searched by index. This field can also be searched by regular expression.

The Text field is very similar to the String field, the only difference is in the internal imple-
mentation of the storage mechanism. A String field always has a limit on its length, which
must be specified for each field. A Text field has no such limit. On the other hand, a Text
field is always slower than a String field because its content is stored outside of the table.

Properties of Text Field

Language
The Text field supports specification of a language, which must be used to index the text.

IndexByWords
When this flag is TRUE, the index is built for each word of the string.

RegEx search

String, VarChar and Text fields can be searched using a regular expression (RegEx) search.
The syntax of RegEx can be found in the folder «Syntax of RegEx». To search by RegEx,
you should use the «LIKE» keyword in the SQL query.

Text Field

Field types

VKernel-29

Picture Field

The Picture field is a special BLOB field, which can store pictures in different formats. By
default it stores Pictures with JPEG compression. You can choose a rate of compression by
parameter quality with range 0 to 100.

Advanced information:

1) This field must get and returns back:
- on MacOS PICT handle.
- on Windows DIB handle.

2) Picture field is the regular BLOB field which stores data in the next format:

Parameter Length Offset
PicType 4 bytes 0 bytes // defined in FBL.h file
PicSize 4 bytes 4 bytes
Picture itself. 8 bytes

Picture is stored in the format of QuickTime PICT with JPG compression i.e., it has the
following header:

struct Picture {
short picSize;
Rect picFrame;

};

struct Rect {
short top;
short left;
short bottom;
short right;

};

If you have a JPG file created, for example, by PhotoShop, you can store this file directly
into Pictrure field. For this you need create and fill in RAM header of picture record, which
contains 4 + 4 + (2 + 8) = 18 bytes. Write this header into Picture field and then append
context of JPG file (this context must start from 0xFFD8 marker).

Field types

Picture Field

VKernel-30

ObjectPtr Field

Field types

«Child» Table,
«Many» Table

«Parent» Table,
«One» Table

Properties of ObjectPtr

target BaseObject
The ObjectPtr field must know the referenced object (parent object).

deletion control
This parameter maintains the database integrity. It regulates a record deletion in the Many
table when a record is deleted in the One table. This parameter can be changed runtime.
This is just a RULE, which defines behavior of the deletion of record. There are three ways
deletions are handled:

SET_NULL – from the database only the One record is deleted, the ObjectPtr of the
related many records is automatically set to NULL. In other words we delete a
parent record and leave its child records.

CASCADE – the One record is deleted and all related with it Many records are
deleted also. If a Many record also have related Many records in the third Table(s)
then they are also deleted. In other words we have cascade deletion.

RESTRICT – the deletion of the One record is not allowed if there is at least one
related with it Many record.

ObjectPtr Field

The field of type ObjectPtr is intended to establish a relation, «many to one» [M:1] be-
tween two tables (BaseObjects).

It stores references to the related parent record (one record). This reference is an unsigned
number (4 bytes, ulong) and it is a physical number of the parent record. In other words,
ObjectPtr field of Table B stores values of internal virtual field «RecID» of Table A (see
picture).

Valentina can use physical number of a record because records are never moved in the table,
so it is constant for a record all its life (after deletion of a record its physical number will be
reused).

VKernel-31

ObjectPtr Field

Field types

The ObjectPtr field can be used to establish MANY to ONE relation.

It also can be used to establish ONE to ONE relation by specifying the ObjectPtr field as
unique. Valentina can use this information to optimize query resolving.

Besides using ObjectPtr field, you can establish MANY to MANY relation between 2 tables.
For this you need create additional third table - Link as shown on the picture:

VKernel-32

BaseObject Methods

BaseObject Methods

Methods of BaseObject are virtual Fields that calculate their own value using values of
other fields (real or virtual) of the same record of BaseObject.

This is similar to Calculated fields in FileMaker. In SQL, in a SELECT statement you can
specify expressions to calculate the value of a new column, for example:

SELECT Name, Upper(Name) FROM Person

Methods of BaseObject don’t use the disk space to store their values. Instead, they are
calculated on only when needed. This is why they are called “virtual Fields”. A Method is
represented as a modified Field of a BaseObject, so you can use Methods everywhere you
can use Fields and in ALMOST the same way. ALMOST because there are some limita-
tions for Methods. In particular you cannot assign a value to a Method, so you can consider
them to be a read-only fields.

• It is similar to any computer language that contains VARIABLES and FUNCTIONS. You can
read the value of a variable and assign a new value to it:

k = var
var = k

but you can only read the value of a function:
k = sin(x)
sin(x) = 0.12456 // ERROR

In Object-Oriented languages, DATA MEMBERS represent what a class KNOWS, and
METHODS represent what a class CAN DO. You should think of BaseObject Methods as a
Function/Method/Code attached to a BaseObject and which can be called to calculate a
value.

Since Methods and Fields are elements of a BaseObject, they share the same name space.
You cannot have Fields and Methods with the same name in the same BaseObject.

Method Results

Method result can be of any supported Field type (except BLOB types). When you specify
the result type of Method, you force Valentina do type casting.

Example: if you specify:
«sin(fld)» returns Short

then you will get only the integer values -1, 0, 1.

If the result size of a calculation is bigger than the specified result type, the result will be
truncated.

BaseObject Methods

VKernel-33

Indexing of Methods

Methods can have the flags ‘Indexed’ , ‘Unique’ and ‘IndexByWords’. This allows you to
create several different indexes for one real field, although it will look like one Field has
one Index.

For example you can have the field «Name». If you set an index for this field then the index
will be case sensitive (i.e., it will consider Jon and JON as different names). Very often you
may want to have a case-insensitive index for this field. To resolve this task, you can define
an indexed Method with the name, for example, ‘NameUpr’ and specify its text as:
«Upper(Name)».
As a result, an index will be built which gets data from the real field «Name» converted to
uppercase. So you can do a case-insensitive search by this index while retaining the original
data as case sensitive.

Note that a Method can use several fields of a BaseObject for calculation of a new value.
This means that Methods allow you to have COMPOUND indexes also (i.e., an index com-
posed of more than one field).

You can use Methods to create optimized indexes. For example, if you have a String[50] but
want search only by the first 4 letters, then you can make an indexed Method: «LEFT(fld,4)».

• An Indexed Method represents 100% of functionality of this feature of standard SQL or
the SET INDEX SET INDEX SET INDEX SET INDEX SET INDEX feature of FoxPro. At the same time, a Method has more power because
we can use it to read the values that comprise the index.

NULL Values and Methods

If the value of a real Field is NULL, then the result of the Method is also NULL. The result
will also be NULL if a calculation meets some prohibited case, such as division by zero.

Methods can have the flag ‘Nullable’ like real fields. In this case, information about if a
value is NULL will be stored on disk - taking 1 bit per record. On the other hand you get the
ability to do a very fast search of NULL or NOT NULL values without recalculating all of
the records.

This is another advantage of Methods over the RDBMS feature SET INDEX.

Methods of BaseObject

Indexing of Methods

VKernel-34Methods of BaseObject

Access of BaseObject Methods

Since a Method looks like a COLUMN of a Table when we display it, logically we work
with them like with BaseObject Fields. So real Fields and virtual Fields are kept in one
common array. The order of Fields and Methods in this array is the order of creation. You
can specify any order using a Cursor.

BaseObject.GetFieldCount(kAll | kFields | kMethods)
Returns the count of all Fields in the BaseObject (kAll), the count of real Fields only (kFields),
or the count of Methods only (kMethods).

BaseObject.GetFieldByIndex(inIndex)
Returns a real or virtual Field by its index. You can recognize if a field is real or virtual by
using the Field.IsMethod property.

BaseObject.GetFieldByName(inName)
Returns a real or virtual Field by its name. You can recognize if a field is real or virtual by
using the Field.IsMethod property.

Access of Methods of BaseObject

VKernel-35

Using of BaseObject Methods

BaseObject Methods significantly expand flexibility of database kernel. They can be used
for the following:

1) Having several indexes for the same field

Let you have field “f1” and you want have 2 or more different indexes for its data. To do this
you define INDEXED BaseObject Methods. Method do not store own values on disk, but
its index will be stored on disk, so in fact we have one field column and several index files.

You can use this if you need:
-- have index for a field as in original so in upper case.
-- have index by words and in the same time NOT by words to be able sort strings.

2) Compound index

i.e. index which is built using data of SEVERAL fields. To do this you need define IN-
DEXED Method that calculate its value using data of 2 or more fields.

3) Optimization of index

Let you have a string field "F1" with length 150 bytes, but want index only first 7 bytes. To
do this you define Method = "left(f1, 7)" and make it indexed. Field "F1" must not be
indexed.

4) Case-insensitive work with strings

Very often you need be able search on strings ignoring case. To do this database must have
an index for field in UPPER or Lower case. So you define a Method "M1" as = "upper(f1)"
and make it indexed. Now in query you use M1 for search and F1 for displaying data in
original case.

s = "test STRING"
sUpr = toUpper(s)
SQLstring = "SELECT f1 FROM T WHERE m1 = '" + sUpr + "'"

Note, that the match string must be converted to upper case before you will use it in SQL
query.

Using of BaseObject Methods

Methods of BaseObject

VKernel-36

Cursor

Cursor provides the result of an execution of SQL’s SELECT statement for a database.
Valentina offers a cursor with random access to records (i.e., you can go directly to Nth
record of a Cursor).

Cursor is a very powerful mechanism of querying your database. In the background Valen-
tina uses the smart query optimizer and query resolver. You can do queries to search on
several fields from different tables and sort result on several fields.

Cursor itself can be considered as a new temporary Table that keeps records of a result. It
looks like a Table (it has fields and records) but it also looks like a selection of all records in
that Table, because you can go to Nth record of cursor.

Note that navigation methods of BaseObject don’t have random access to Nth record, they
have only next/prev methods. Since a Cursor keeps a selection of records it uses RAM – 4
bytes per record.

Cursors are good choices for implementing multi-user application. Each Cursor can be
executed in separate thread of your application and represent one user.

Each cursor has independent memory buffer, so you can have many cursors at the same
time for the same BaseObject, which point on different records even in the same thread.

Properties of Cursor

FieldCount
How many columns this cursor has.

RecordCount
The number of records found as a result of SQL query.

CurrentPosition
Keep current position in the record. Position in the Cursor is not the same as CurrentRecord
in BaseObject. For example first record of the Cursor can be 125th in the BaseObject.

ReadOnly
TRUE if the records of the Cursor can be read only; otherwise it is false.

• Cursor is read only if it is designed as a result of join of several BaseObjects with at least
one MANY BaseObject.
• Cursor built on single BaseObject can be modified.
• Cursor built as a result of join of only ONE BaseObject can be modified.

In other words Cursor is read only if there is an ambiguity in the execution of such opera-
tions as Add/Update/Delete.

Cursor

Cursor

VKernel-37

Elements of Cursor

Fields
Cursor contains the fields (in order) that you have specified in the SELECT statement of an
SQL query.

Records
Cursor can contain zero or more records found as a result of an SQL query.

Creation of Cursor

When you create a cursor using VDatabase.SqlSelect() method you need specify 3 param-
eters:

CursorLocation - can be { kClientSize = 1, kServerSide = 2 }.
LockType - can be { kNoLock = 1, kReadOnly = 2, kReadWrite = 3 }.
CursorDirection - can be { kForwardOnly = 1, kRandom = 2 }.

CursorLocation parameter specifies where will be located this cursor. The client side cur-
sor copy all found records on

1) Client side cursor can be read-only. i.e. you cannot modify its records. Client side cursors
should be used only for selections with small amount of records. Because Server send all
found records into RAM of Client computer, and this can take some time.
This cursors are good for WEB development.
Note, that you can modify selected records using SQL's commands INSERT/UPDATE/
DELETE, but your cursor will not reflect this changes. You need rebuild cursor to see that
changes.

2) Server side cursor can modify its records if you have specify kReadWrite parameter, and
cursor satisfy usual rules of Updatable cursor (e.g. it is built for single table).
Server side cursor keeps selected records on the Server RAM and/or HDD, Only one record
at time is moved to the RAM of Client computer. This cursors are good for Intranet devel-
opment where you have fast network.

IMPORTANT!!!
If you do not specify this parameters, then on default Valentina creates:

Client side, read-only, Forward-only cursor.
This combination of parameters create cursor that is the most friendly to other users in
multi-user environment.

Therefore, if you port your existed stand-alone application to be Client, you need to make
sure that for ALL cursors which you use to modify records, you have specify kServerSide.

Properties of Cursor

Cursor

VKernel-38

LockType parameter specifies what record locks you want obtain for this cursor.

1) if you do not want lock records and be affected by locks of other cursors then you can
specify kNoLock.
NOTE: kNoLock is similar to transaction isolation level 0 "DIRTY READ".
Use this kind of locks very carefully! When you exactly know what you do.

2) If you want only read records using this cursor then you need use kReadOnly.
Several different cursor can set Read Only lock on some record. This is why this kind of
lock also is named SHARED LOCK.
NOTE: kReadOnly is similar to isolation level 1 "UNCOMMITTED READ".

3) If you want modify records of this cursor then you need specify kReadWrite.
Only one cursor can set Write lock on a record. This is why such kind of lock also is named
as EXCLUSIVE LOCK.
NOTE: kReadWrite is similar to isolation level 3 "REPEATABLE READ".

In the case Valentina cannot obtain lock for at least one record of cursor, it return error
kCannotSetLock and cursor is not created.

CursorDirection parameter is optional. If you know that you will iterate the cursor only
once in forward direction then you can specify this to Valentina. As result Valentina will be
able unlock a record as soon as you move to the next record, because Valentina know that
you will never return to that record using this cursor. Again, this is just optimization. This
parameter DO NOT change semantic of operations.

Access of BaseObject Methods from Cursor

When you use a Cursor, BaseObject Methods look and work like real fields. You can use
the same functions to access Methods:

Cursor.GetFieldCount()
Cursor.GetFieldByIndex()
Cursor.GetFieldByName()

Creation of Cursor

Cursor

VKernel-39

Relations between Tables

To establish a relationship between two tables, Valentina offers a special mechanism - fields
of type ObjectPtr . We will call this type of relation an ObjectPtr-link , while the old
RDBMS way is called a RDB-link.

A developer can choose either the traditional RDBMS or modern Valentina technique to
establish a relation between tables; furthermore, he can mix both techniques to get the best
solution.

To understand how an ObjectPtr works, let’s quickly consider traditional techniques of the
relational and the network data models.

Relational Data Model

In the Relational Data Model, in order to establish a relation between two tables, a rela-
tional database uses a "Pointer by Value»:

Table A must have a field «ID» (indexed, unique, required), and Table B must have a field
with the same attributes - a pointer to the record in Table A. The related records have the
same values in the fields «Table A.ID» and «Table B.Table_A_Ptr». As a result, we have a
relation [Table A : Table B] of one to many [1 : M] - one record of Table A is related to many
records of Table B.

Drawbacks of the Relational Data Model
A database developer must provide values for the unique identifier of Table A. There are 2
traditional ways to do this: 1) as an identifier which is used in some real world value (such
as «social security number»), or 2) a special, artificially generated number.

A field of any type can be used as the identifier of the record. So if a string[20] is used, then
Table B must store an additional 20 bytes in the record and an additional 20 bytes must be
stored in the index of the field «Table_A_Ptr».

Access speed from the record of Table B to the related record of Table A is slow, because the
database must perform 4 steps:
1. Get the ID value from the field «Table_A_Ptr».
2. Search the index of the field «Table A.ID», using this value to get some internal ID of the
record.
3. Search the primary index of Table A, using the internal ID to get the address of the record.
4. Load the record of Table A.

Relations between tables

Relations between tables

VKernel-40

Network Data Model

The other, much less commonly used database technology is the pointer-based navigational
Network Data Model. The same database structure for the network model looks like:

As we can see, the Network Data Model does not need ID fields in the tables, so there is less
work for the developer. Instead there is an additional concept, the «Set». The system auto-
matically links related records in the list. A record of Table A that is a parent record, has
pointers to the first and the last related records of Table B (4 + 4 = 8 bytes). Each related
record of Table B has pointers to the previous and the next related records and a pointer to
the parent record (4 + 4 + 4 = 12 bytes).

The direct pointer is a direct address of the record. As a result, the system can find the parent
record in the shortest time.

Drawbacks:
The internal representation of the record depends on the database structure. If you add a
new set, then the system must add additional space where the pointers will be stored to each
record. Sets do not allow for fast random or sorted access to the records, because there are
no indexes.

Although at first look the network model is simpler than relational, this is not true. Working
with sets adds a significant amount of work to the management of database.

The main problem of Network DBMS - they can’t be interactively queried via language like
SQL. Queries must be programmed with such languages as C/C++.

Relations between tables

Network data model

VKernel-41

Valentina Data Model

Valentina offers a hybrid of the relational and network database models. It stores direct
pointers to the related records as normal fields of the table:

With the Valentina Data Model, there no need for key in the tables. There is also a special
type of field called an ObjectPtr . This field is intended for storing RecIDs of the related
records (ulong, 4 bytes).

• A pointer of type ObjectPtr points to the Table and not to the field of the Table as in the
relational data model. In other words an ObjectPtr field does not depend on the structure
of the related Table. As a result we get a more flexible database structure, because you
can change a parent table and the change will not affect other tables.

With the Valentina Data Model, you get all of the benefits of a relational database, plus:
- The database structure is simpler and more flexible.
- Required disk space is lower because there are no ID fields in the tables and there are no
corresponding indexes, the size of the pointer is always 4 bytes.
- The parent record can be found in a single logical disk access.

An ObjectPtr field is 2-5 times faster than a RDB-link based on a Long field (i.e., 4 bytes).
The ObjectPtr field will be even faster in comparison to a RDB-link based on a field type
larger than 4 bytes (for example, in the RDBMS world we very often see tables related by a
String[10-20]).

As was mentioned at the beginning of this section, you can mix both techniques in his
database. Why would you prefer to use the old slower RDB-links? There are several possi-
bilities:

a) You already have a RDBMS database and want to transfer it to Valentina format. The
easist way to do this – use RDB-links. Later you can convert a RDB-link into an Object-Ptr
link for an existing database.

b) If data for the database comes from an external source, then typically a special unique ID
will mark the records. In this case again it may be easier to use RDB-links.

• You can export records of tables related by ObjectPtr-links into text files which can be
imported into another RDBMS. For this export the field «RecID» of the related BaseOb-
ject, it will play the role of an unique ID field (i.e. key field) of that table.

Relations between tables

Valentina Data Model

VKernel-42The Database Cache

The Database Cache

The Database Cache

To improve the efficiency of disk access, Valentina uses a Database Cache. The minimum
cache size is 512 KB. Maximum size is limited only by available RAM. The optimal choice
for cache size is 50% of the available RAM, but it must not be any larger than that.

All information read from disk goes through the Cache, and all information, which you
write to the Database, goes through the Cache. If you add/update many records, the cache
will be contain new information not yet stored on disk. The risk is that if at this moment a
crash occurs, all of the changes will be lost.

To force Valentina to store any new Cache info on disk, you can use the method Flush().
This method will cause all changes to be written to disk. A subsequent crash will not lose
data. As a developer of your database application, you must choose a compromise between
safety and efficiency:

1) You can call Flush() after any database change. This is the safest way, but efficiency of
Add/Update will significantly decrease. This way usually is used if you get one record for
Add/Update via the GUI of your application.

2) You can call Flush() after some amount of added/updated records (e.g., 100 or 1000
records). This way gives you the best possible performance but increases the risk of losing
data. Usually this method is used by applications which generate new records in a loop by
some algorithm.

• You can call Flush() on idle in your application if this is possible.

Valentina automatically flushes the cache in the following cases:
- The cache becomes full. Valentina will write to disk the oldest information of the Cache
and remove it from Cache. Imagine that you have a 3 MB Cache and write, in a loop, 100
MB of records. In this case, after the loop the first 97 MB will be already stored on disk and
the last 3 MB are still present in the Cache. To save them on disk, call Flush().
- When the database is closed.

VKernel-43

RAM r equirements for sorting

Valentina’s ‘sort on fields’ algorithm must have enough RAM in order to be successful. In
particular it must have 2 * (4 * N) bytes, where N is the number of records in the Selection.

Number of records RAM
10,000 80 KB
100,000 800 KB
1,000,000 8 MB

Note that this is a single operation, which must have enough RAM to be successful. Other-
wise, you’ll get the message: «Not enough RAM to complete operation».

All other operations of Valentina can be successful in any amount of RAM. However, they
may be slower if the amount of available RAM is low.

VKernel-44

Appendix A: Valentina error numbers

The errors numbers of MacOS and Windows - are negative numbers and 1..100
The errors specific to Valentina - are positive numbers in range 300..700

The following is the list of all error numbers which can be raised by Valentina:

kFBL_TimeOut = 666
kFBL_Error = 300

kFBL_DataFileError = 301
kFBL_TableError = 302
kFBL_FieldError = 303
kFBL_IndexError = 304
kFBL_ParserError = 305
kFBL_CacheIsNotPresent = 306
kFBL_AssertionFail = 307
kFBL_AssertionNULL = 308
kFBL_CacheIsSmall = 309
kFBL_WrongParameterType = 310

// DataFile errors:
kFBL_CantOpenNewVersion = 320
kFBL_CantReadDomain = 321
kFBL_EmbFileNotFound = 322
kFBL_ExpectedBONotFound = 323
kFBL_ExpectedFieldNotFound = 324
kFBL_WrongPassword = 325
kFBL_WrongEncryptionKey = 326
kFBL_DatabaseIsNotOpened = 327
kFBL_WrongStructureEncryptionKey = 328

// Field errors.
kFBL_FieldNotIndexed = 340
kFBL_FieldIsConstant = 341
kFBL_FieldIsCounted = 342
kFBL_FieldIsComposed = 343
kFBL_FieldIsUnique = 344
kFBL_IndexNotSorted = 345
kFBL_FieldNameNotUnique = 346
kFBL_FieldIsNotMethod = 347
kFBL_InvPageVarChar = 348
kFBL_CannotCreate = 349
kFBL_LanguageNotFound = 350,
kFBL_CorruptedVarChar = 351,

// Table errors.
kFBL_TableIsEmpty = 360
kFBL_TableIsCorrupted = 361
kFBL_RecordNotFound = 362

Appendix A

Appendix A

VKernel-45

Appendix A

Appendix A

// Index errors.
kFBL_SXCorrupted = 370
kFBL_FailToBuild = 371
kFBL_InvPage = 372

// Query parser errors.
kFBL_NeedValue = 380
kFBL_NeedLeftBound = 381
kFBL_NeedRightBound = 382

// Parameter errors.
kFBL_WrongDataBaseRef = 390
kFBL_WrongBaseObjectRef = 391
kFBL_WrongFieldRef = 392
kFBL_WrongCursorRef = 393

// OBL layer errors:
kOBL_Error = 500
kOBL_BaseObjectError = 501
kOBL_RelationError = 502
kOBL_DatabaseError = 503

// Database errors:
kOBL_WrongDBName = 510

// BaseObject errors.
kOBL_WrongBaseNumber = 520
kOBL_WrongChildType = 521
kOBL_ObjectIsNotEmpty = 522
kOBL_CorruptedChain = 523
kOBL_ExpectedBONotFound = 524
kOBL_ExpectedFieldNotFound = 525

// Relation errors.
kOBL_CantRelate = 550
kOBL_RelationIsNotEmpty = 551

VKernel-46

// SQL errors:
errSQL_SELECTexpected = 600
errSQL_FROMexpected = 601
errSQL_TableNotFound = 602
errSQL_FieldNotFound = 603
errSQL_SyntaxError = 604
errSQL_CantBeUpdated = 605
errSQL_NullExpected = 606
errSQL_LeftBracketExpected = 607
errSQL_RightBracketExpected = 608
errSQL_ExpressionExpected = 609
errSQL_WrongFieldType = 610
errSQL_NotStringField = 611
errSQL_ValueExpected = 612
errSQL_WrongLink = 613
errSQL_AmbigiouseLink = 614
errSQL_MissingLink = 615
errSQL_WrongExpression = 616
errSQL_MixAgregativeAndNormal= 617
errSQL_CommaExpected = 618
errSQL_NotEnoughParameters = 619;
errSQL_Expected_TABLE = 620;
errSQL_Expected_WHERE = 621;
errSQL_Expected_INTO = 622;
errSQL_Expected_VALUES = 623;
errSQL_Expected_SET = 624;
errSQL_Expected_ASSIGN = 625;
errSQL_Expected_DOT = 626;

errSQL_Invalid_FieldLength = 627;
errSQL_Invalid_FieldValue = 628;
errSQL_Missing_FieldValues = 629;
errSQL_ExpectedStringConstant = 630;

// semantic errors:
errSQL_FieldNotFromSelectedTable = 640;

Appendix A

Appendix A

	Introduction
	Parameters of the Valentina Database Engine
	Database of Valentina
	 dbName.vdb» file
	 dbName.dat» file
	 dbName.blb» file
	 dbName.ind» file
	Properties of Database
	Elements of Database
	Creation of Database
	Encryption of database
	System Tables

	BaseObject (Table)
	Properties of a BaseObject
	Functions to modify BaseObject properties
	Elements of a BaseObject

	Field types
	Properties of a Field
	Functions to modify Field properties

	Numeric Fields
	Date, Time and DateTime Fields
	String and VarChar Fields
	VarChar technical notes
	Properties of String and VarChar Fields
	RegEx search

	BLOB Field
	Properties of BLOB Field
	Compression of BLOB field

	Text Field
	Properties of Text Field
	RegEx search

	Picture Field
	ObjectPtr Field
	Properties of ObjectPtr

	BaseObject Methods
	Method Results
	Indexing of Methods
	NULL Values and Methods
	Access of BaseObject Methods
	Using of BaseObject Methods

	Cursor
	Properties of Cursor
	Elements of Cursor
	Creation of Cursor
	Access of BaseObject Methods from Cursor

	Relations between Tables
	Relational Data Model
	Network Data Model
	Valentina Data Model

	The Database Cache
	RAM requirements for sorting
	Appendix A: Valentina error numbers

